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Abstract

The Ritz variational method is applied to problems of a crack (a cut) in the middle half-plane of a three-dimensional elastic
wedge. The faces of the elastic wedge are either stress-free (Problem A) or are under conditions of sliding or rigid clamping
(Problems B and C respectively). The crack is open and is under a specified normal load. Each of the problems reduces to an
operator integrodifferential equation in relation to the jump in normal displacement in the crack area. The method selected makes it
possible to calculate the stress intensity factor at a relatively small distance from the edge of the wedge to the cut area. Numerical
and asymptotic solutions [Pozharskii DA. An elliptical crack in an elastic three-dimensional wedge. Izv. Ross Akad. Nauk. MTT
1993;(6):105–12] for an elliptical crack are compared. In the second part of the paper the case of a cut reaching the edge of
the wedge at one point is considered. This models a V-shaped crack whose apex has reached the edge of the wedge, giving a
new singular point in the solution of boundary-value problems for equations of elastic equilibrium. The asymptotic form of the
normal displacements and stress in the vicinity of the crack tip is investigated. Here, the method employed in [Babeshko VA,
Glushkov YeV, Zinchenko ZhF. The dynamics of Inhomogeneous Linearly Elastic Media. Moscow: Nauka; 1989] and [Glushkov
YeV, Glushkova NV. Singularities of the elastic stress field in the vicinity of the tip of a V-shaped three-dimensional crack.
Izv. Ross Akad. Nauk. MTT 1992;(4):82–6] to find the operator spectrum is refined. The new basis function system selected
enables the elements of an infinite-dimensional matrix to be expressed as converging series. The asymptotic form of the normal
stress outside a V-shaped cut, which is identical with the asymptotic form of the contact pressure in the contact problem for an
elastic wedge of half the aperture angle, is determined, when the contact area supplements the cut area up to the face of the
wedge.
© 2006 Elsevier Ltd. All rights reserved.

In an earlier paper,1 the regular asymptotic method was used, which is effective when there is a sufficient distance
between the crack and edge. The Ritz method was employed in Ref. 4 to solve the analogous problem of a crack in
an elastic layer. A narrow crack emerging at the edge of a wedge was examined in Ref. 5 using the paired integral
equation method. The problem of a crack close to the free boundary of an elastic half-space6,7 is a special case of the
problem being solved here (a wedge angle of 180◦). The method employed in the second part of the paper is effective
whatever the aperture angles of the crack and the elastic wedge and was applied earlier to contact problems with a
V-shaped contact area.8,9 A regular asymptotic solution for a V-shaped crack with a small aperture angle in an elastic
wedge showed10 that there are no oscillating terms associated with complex points of the spectrum. Singularities in
the case of a crack reaching a regular surface have been investigated,11 and also singularities of the elastic stresses at
the vertex of a polyhedron.12
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1. The Ritz method for an elliptical crack in a wedge

The formulation of Problems A, B and C of a cut in the middle half-plane of a wedge with three different types
of boundary condition on the wedge faces was given earlier in Section 1 of Ref. 1. These problems reduce to an
integrodifferential equation (Eq. (1.2) of reference 1). Below, we will retain the notation adopted earlier in Ref. 1, but
with two misprints corrected: 1) in the formula for g2(t) (formula (1.4) in Ref. 1), cth αt rather than cth2αt should have
been printed; 2) in the formula for g*(u) (formula (1.10) in Ref. 1), 2cos2α rather than cos2α should have been printed
in the numerator.

Let the region of the crack be an ellipse � extended along the edge of the wedge:

We will introduce dimensionless quantities by formulae (formulae (2.1) in Ref. 1) containing two principal geomet-
rical parameters: � = a/b and c′ = c/b (the primes will be omitted below). For simplicity we will assume that a constant
normal load q is applied to the sides of the cut. We then have (Eq. (1.2) in Ref. 1) the following integrodifferential
equation in the function f(r, z) of the cut opening

(1.1)

where R = ((r − x)2 + (z − y)2)1/2 and the function F(x, y, r, z) was defined earlier (see formula (1.8) in Ref. 1 for Problem
A or formula (1.11) in Ref. 1 for Problems B and C, with x replaced by x + � and r by r + �).

In the limiting case � → ∞, Eq. (1.1) has the exact solution

(1.2)

corresponding to a crack in an unbounded elastic medium [5]. Here, E(e) is the complete elliptical integral of the
second kind.

Assuming that � > c (the cut does not reach the edge of the wedge), to solve Eq. (1.1) we will use the Ritz variational
method. We will investigate the minimum of the functional

where B is the operator on the left-hand side of Eq. (1.1). We will seek a solution in the form

(1.3)

where Um(x) are Chebyshev polynomials of the second kind.
We will use the expansion (formula 2.5.6.4 in Ref. 13, and formula 2.16.14.1 in Ref. 14)

(1.4)

understood in the generalized sense. Introducing representation (1.4) into Eq. (1.1), on the basis of the conditions for a
minimum of the functional G we obtain a system of linear algebraic equations in the unknown coefficients amn and Bmn

(m = 0, 1, . . ., M; n = 0, 1, . . ., N). Here, the modified Bessel function must be replaced by its integral representation
(formula 2.4.18.4 of in Ref. 13) and account must be taken of the values of the integrals (formula 2.5.44.13 in Ref. 13,
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and formula 2.12.4.6 in Ref. 14)

(1.5)

The last two integrals of (1.5) are evaluated by differentiating the first formula of (1.5) with respect to A. The first few
functions Fm(s, t) have the form

(1.6)

The system of linear equations is written as follows:

(1.7)

where the elements that are independent of the aperture angle of the wedge 2α, i.e. those corresponding to a crack in
an unbounded medium and associated with the principal part of the operator on the left-hand side of Eq. (1.1), have
the form

(1.8)

Here and below, we have introduced the following notation
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The remaining matrix components of system (1.7), to avoid unwieldiness, will be given for a Poisson’s ratio � = 1/2:

(1.9)

Here, j = 1, 2 and 3 for Problems A, B and C respectively.
In the general case, it is necessary to add to elements (1.9) components generated by terms at (1 − 2�) in the kernels,

and to take into account the dependence of the function W3(u) on � (see formulae (1.4), (1.8), and (1.11) in Ref. 1).
For elements (1.9), the conditions of symmetry

are satisfied, ensuring symmetry of the matrix of system of equations (1.7) and resulting from the symmetry of the
kernel of Eq. (1.1).

On the basis of solution (1.3), we obtain a formula for the ratio of the normal stress intensity factors (SIFs) for the
case considered and for the case of a crack in space (� = ∞)

(1.10)

where � is the angle between the positive direction of the semi-axis r and a ray stemming from the origin of
coordinates in a direction towards the point on the crack contour at which the ratio (1.10) is calculated.

To test the Ritz method, we will use a regular asymptotic solution obtained earlier,1 effective for large values of �
(far from the edge of the wedge). This will be written in the form

(1.11)

where K(e) is the complete elliptic integral of the first kind.
The constant A* when � = 1/2 is calculated by means of the formula

(1.12)

On the basis of solution (1.11), the SIF ratio (1.10) acquires the form

(1.13)
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Table 1

2� � 1.5 1.0 0.8 0.7

c 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6

180◦
f0 0.419 0.479 0.434 0.507 0.459 0.561 – –
K1 1.02 1.02 1.04 1.05 1.08 1.11 – –
K2 1.02 1.03 1.08 1.14 1.21 1.50 – –

270◦
f0 – – 0.414 0.472 0.416 0.476 0.418 0.480
K1 – – 1.01 1.01 1.01 1.01 1.01 1.01
K2 – – 1.01 1.01 1.02 1.04 1.03 1.09

where the angle � has the same meaning as in (1.10). Below, we will put K1 = KI/K
∞
I when � = 0, and K2 = KI/K

∞
I

when � = �.
For Problem A with 2� = 180◦ (a half-space) and � = c = 1/2 (here, the constant A* = −0.4375) we will give the

results of testing the Ritz method: for an opening of the cut at its centre f0 = f(0, 0)/q = 0.415 (0.414), and the SIFs have
the values K1 = 1.010 (1.003) and K2 = 1.011 (1.005). The asymptotic solution is given in brackets; for 2� = 180◦ it is
applicable when � > 1 + c.1

The Ritz method can be used when � > c and gives acceptable results for non-acute wedge aperture angles 2�. When
2� ≤ 90◦, difficulties arise with the accurate evaluation of the integrals with respect to u in formulae (1.9), since

The Ritz method is particularly effective at angles 2� ≥ �, when the wedge is transformed into an angular notch in
elastic space (a V-shaped groove).

Table 1 gives values of f0 and the SIFs for Problem A with � = 1/2 and different values of 2�, � and c. The crack
will first begin to propagate towards the edge, and therefore K2 is always greater than or equal to K1. On approaching
the edge (� decreases, c increases), the value of K2 increases if the angle of the wedge decreases. The opening of the
cut f0 also increases as the region of the cut approaches the edge of the wedge. The smaller the angle of the wedge
and the relative distance from the area � to the edge, the more dangerous is the crack in the sense of its subsequent
propagation.

2. A V-shaped crack in a wedge

It is well known6 that the normal stresses outside a V-shaped cut with angle 2� in elastic space at the cut tip have
the same asymptotic form as the contact stresses in the problem of a V-shaped punch with angle 2�–2� on an elastic
half-space. The problems of a cut with angle 2� in the middle half-plane of an elastic wedge with angle 2� and of
the action of a punch on the face of an elastic wedge with angle �, when the contact area in plan occupies this entire
face, with the exception of the V-shaped notch with angle 2� (this area is shown hatched in the figure), are related in
a similar way.

Let the region of the cut � be a wedge with angle 2� (not hatched in the figure); the angle between the negative
semi-axis z and the neighbouring side of the V-shaped cut is �. In the initial integrodifferential equation (Eq. (1.2) in
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Ref. 1), we will change to polar coordinates according to the formulae

(2.1)

and seek its solution in the form of the Mellin integral

(2.2)

where the contour � must be chosen from the condition f*(0, �) = 0. We will use values of the known integrals (formula
2.16.14.3 in Ref. 14, and formula (1.7) in Ref. 15) and we will introduce the notation

(2.3)

where �(z) is the gamma function and P−iu
s (x) is the Legendre function, to evaluate which it is convenient to use its

representation (formula 8.704 in Ref. 16) in terms of a hypergeometric function.
If the right-hand side of the equation is now represented in the form

(2.4)

and the new notation

is introduced, we will arrive at a one-dimensional integrodifferential equation of the form

(2.5)
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For Problem A (j = 1, n = 2)

(2.6)

where the functions �±(t) are found from Fredholm equations of the second kind

(2.7)

For Problems B and C (j = n = 2 and 3 respectively), F̃s(u, �, �) = 0.
The index of singularity of the function f*(	, �) when 	 → 0 is related to points of the spectrum of the operator

on the left-hand side of Eq. (2.5). The poles sk of the function fs(
) will be those values of the parameter s at which
non-trivial solutions of the corresponding homogeneous equation may exist, i.e. points of the spectrum of the operator
(2.5); here, sk is independent of 
.

To find sk, Eq. (2.5) is discretized by Bubnov’s method: the solution is sought in the form of an expansion in a
system of basis function vm(
)

(2.8)

and, to determine tm(s), the error is analysed by the second basis {ul}∞l=0; as a result, in relation to the unknowns, the
following infinite system arises

(2.9)

where

(2.10)
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Here, {wk}∞k=0 is a system of projectors onto the basis {ul}∞l=0, i.e. (ul, wk)|L2
= �kl, where �kl is the Kronecker

delta.
The function fs(
) at 
 = ±1 behaves like (1 − 
2)1/2. To regularize the initial ill-posed problem – Eq. (2.5) – it is

necessary to take into account this singularity in the coordinate functions, and we will therefore select the following
as the basis functions (formula 7.343 in Ref. 16)

where Um(x) are Chebyshev polynomials of the second kind. In the system of functions ul(x) the singularity is not
introduced since the right-hand side and the error are continuous functions. By virtue of the condition of orthogonality
of the Chebyshev polynomials, we obtain that

Using an expansion of the Legendre function of the form2,3

and also the value of the integral obtained using well-known formulae (formulae 7.355, 8.471 and 8.941 in Ref. 16)

twice differentiating with respect to x under the integration sign in formula (2.10) and, in system (2.9), making the
replacements

for the elements a∗
lm = a∗

lm(s) (l, m = 0, 1, . . .) we obtain

(2.11)

The prime on the summation sign denotes that the first term (n = 0) of the series is taken with coefficient ½.
Owing to the successfully chosen system of basis functions, the series in formula (2.11) converges. If, when s = sk,

the determinant of the infinite-dimensional matrix with elements (2.11) vanishes, then, as follows from expression
(2.2)
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Table 2

Problem 2� 2�

45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

A
45◦ 0.048 0.83 0.90 0.95 0.92 0.93 0.94
90◦ 0.96 0.97 0.75 0.81 0.78 0.79 0.79

135◦ 0.94 0.72 0.66 0.65 0.65 0.65 0.64

B
45◦ 0.90 0.88 0.90 0.96 0.93 0.93 0.94
90◦ 0.77 0.74 0.75 0.81 0.78 0.78 0.80

135◦ 0.67 0.66 0.65 0.64 0.64 0.65 0.64

B
45◦ 0.98 0.96 0.95 0.93 0.96 0.96 0.96
90◦ 0.89 0.85 0.81 0.79 0.81 0.82 0.82

135◦ 0.72 0.67 0.66 0.65 0.64 0.64 0.64

Here, the normal stress outside the cut (the contact pressure in the problem of a punch in an additional region for a
wedge with angle �), according to formula (2.4), has the asymptotic form

For � > 0.1� and not too low values of �, it is sufficient to truncate the matrix with elements (2.11) to a dimensional
of 10–12 in order to ensure two significant digits for the zeros of its determinant on the real axis.

Problem B with 2� = 360◦ and Fs(�, �) = 0 corresponds to a crack in elastic space. Here we obtain �* = 0.500 for
2� = 180◦7 and �* = 0.815 for 2� = 90◦;17 at other crack angles, the index �* corresponds to the singularity �* − 1 of
the contact pressures at the tip of a V-shaped punch with angle 2� − 2� on an elastic half-space.8,9

Table 2 gives values of �* for the three problems with �* = 0 (the axis of symmetry of the cut is perpendicular to
the edge of the wedge), � = 0.3, and different angles of the crack and the elastic wedge. The influence of the boundary
conditions on the faces of the wedge on the asymptotic forms required falls as the aperture angle 2� of the elastic
wedge increases. For low crack angles, calculations agree with results obtained earlier.10 For example, with 2� = 270◦,
2� = 0.4 and �* = 0 for the three problems, we have 0.98 < �* ≤ 0.99, which corresponds to a graph obtained earlier
(Fig. 10 in Ref. 2).
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